
Topic 2: Number Theory 
Dr J Frost (jfrost@tiffin.kingston.sch.uk) 

www.drfrostmaths.com  

Last modified: 27th January 2017 

All Maths Challenge and Olympiad problems are 
© UK Mathematics Trust (www.ukmt.org.uk)  

http://www.ukmt.org.uk/


Topic 2: Number Theory 
Part 1 – Introduction 

a. Using the prime factorisation 

b. Factors in an equality 
c. Consecutive integers 

Part 2 – Factors and Divisibility 

a. Some History 
b. Divisibility Tricks 
c. Coprimality 
d. Breaking down divisibility problems 

i. Nearest cube/square 
ii. Number of zeros 
iii. Number of factors 



Topic 2: Number Theory 
Part 3 – Diophantine Equations 

a. Introduction 
b. Using laws of modular arithmetic 

Part 4 – Modular Arithmetic 

a. Factors in an equality (revisited) 
b. Dealing with divisions 
c. Restricting integer solutions 

c. Multiples and residues 
d. Playing with different moduli 

c. Useful properties of square numbers 



Topic 2: Number Theory 

Part 6 – Rationality 

Part 7 – ‘Epilogue’ 

a. Reasoning about last digit 

Part 5 – Digit Problems 

b. Representing algebraically 



 Part 1: Introduction 

 Topic 2 – Number Theory 



   What is Number Theory? 
Number Theory is a field concerned with integers (and fractions), such as 
the properties of primes, integer solutions to equations, or proving the 
irrationality of π/e/surds. 

How many factors does 
10001000 have? 

Are there any integer 
solutions to a3 + b3 = c3? 

How many zeros does 
50! have? What is its 
last non-zero digit? 

Prove that the only non-trivial 
integer solutions to ab = ba is {2,4} 



Fermat (1601-1665) 

Most famous for posing “Fermat’s Last Theorem”, i.e. That  
𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 has no integer solutions for 𝑎, 𝑏 and 𝑐 when 𝑛 > 2. 
Also famous for Fermat’s Little Theorem (which we’ll see), and had an 
interest in ‘perfect numbers’ (numbers whose factors, excluding itself, 
add up to itself). 

Euler (1707-1783) 

Considered the founder of ‘analytic number theory’. This included 
various properties regarding the distribution of prime numbers. He 
proved various statements by Fermat (including proving there are no 
integer solutions to 𝑎4 + 𝑏4 = 𝑐2). Most famous for ‘Euler’s Number’, or 
‘e’ for short and Euler’s identity, 𝑒𝜋𝜋 = −1. 

Euclid (300BC) 

Better known for his work in geometry, but proved there are infinitely 
many primes. Euclid’s Algorithm is used to find the Greatest Common 
Divisor of two numbers. 

Who are the big wigs? 



Lagrange (1736-1813) 

Proved a number of Euler’s/Fermat’s theorems, including proving that 
“every number is the sum of four squares” (the Four Square Theorem). 

Dirichlet (1805-1859) 

Substantial work on analytic number theory. e.g. Dirichlet’s Prime Number 
Theorem: “All arithmetic sequences, where the initial term and the 
common difference are coprime, contain an infinite number of prime 
numbers.” 

Riemann (1826-1866) 

The “one hit wonder” of Number Theory. His only paper in the field 
“On the number of primes less than a given magnitude” looked at the 
density of primes (i.e. how common) amongst integers. Led to the yet 
unsolved “Riemann Hypothesis”, which attracts a $1m prize. 

Who are the big wigs? 



Andrew Wiles (1953-) 

He broke international headlines when he proved Fermat’s Last 
Theorem in 1995.  Nuf’ said. 

Who are the big wigs? 



   Vote No Vote Yes 

Euclid’s Fundamental Theorem of Arithmetic, also known as the Unique Factorisation 
Theorem, states that all positive integers are uniquely expressed as the product of 
primes. 
 
Assume that 1 is a prime. 
Then all other numbers can be expressed as a product of primes in multiple ways: e.g. 
4 = 2 × 2 × 1, but also 4 = 2 × 2 × 1 × 1, and 4 = 2 × 2 × 1 × 1 × 1, and so on. 
Thus the Fundamental Theorem of Arithmetic would be violated were 1 a prime. 
 
http://primes.utm.edu/notes/faq/one.html provides some other reasons. 
 
(Note also that 0 is neither considered to be ‘positive’ nor ‘negative’. Thus the 
‘positive integers’ start from 1) 

Is 1 a prime number? 

http://primes.utm.edu/notes/faq/one.html


Divisibility Tricks 
How can we tell if a number is divisible by... 

2 Last number is even. 

3 Digits add up to multiple of 3. e.g: 1692: 1+6+9+2 = 18  

4 Last two digits are divisible by 4. e.g. 143328 

5 Last digit is 0 or 5. 

6 Number is divisible by 2 and 3 (so use tests for 2 and 3). 

7 There isn’t really any trick  that would save time. You could double the last digit 
and subtract it from the remaining digits, and see if the result is divisible by 7.  
e.g: 2464 -> 246 – 8 = 238 -> 23 – 16 = 7. But you’re only removing a digit each time, 
so you might as well long divide! 

8 Last three digits divisible by 8. 

9 Digits add up to multiple of 9. 

10 Last digit 0. 

11 When you sum odd-positioned digits and subtract even-positioned 
digits, the result is divisible by 11. 
e.g. 47949:    (4 + 9 + 9) – (7 + 4) = 22 – 11 = 11, which is divisible by 11. 

12 Number divisible by 3 and by 4. 

? 
? 
? 
? 
? 

? 

? 

? 
? 

? 

? 



Notation 

2 ∤ 9 

2 | 8 

5 | 𝑛 

𝑛 | 15 

This means “2 divides 8”. 

This means “2 does not 
divide 9”. 

𝑛 is divisible by 5. 

𝑛 is a factor of 15. 



Notation 

15,10 = 5 

𝐿𝐿𝐿 6,8 = 24 

This is NOT a coordinate! It 
means “the Greatest 
Common Divisor of 15 and 
10”. 

The Lowest Common 
Multiple of 6 and 8. 



If 3|𝑛 and 5|𝑛, then is it the case 
that 15|𝑛? 

If 4|𝑛 and 6|𝑛, then is it the case 
that 24|𝑛? 

   False True 

   False True 

Take 12 for example. It’s divisible by 4 and 6, but 
not by 24. 
 
In general, if a number is divisible by a and b, then 
the largest number it’s guaranteed to be divisible 
by the Lowest Common Multiple of a and b. 
LCM(4,6) = 12. 

True or false 



If two numbers a and b share no common factors, then the 
numbers are said to be coprime or relatively prime. The following 
then follows: 
 

𝐿𝐿𝐿 𝑎, 𝑏 =  𝑎𝑏 
𝑎, 𝑏 = 1 

Coprime? 

2 and 3?    No True 

5 and 6?    No True 

10 and 15?    No True 

Coprime 



We can also say that opposite: 

If we want to show a number is divisible by 15: 
 ...we can show it’s divisible by 3 and 5. 

But be careful. This only works if the two numbers are coprime: 

If we want to show a number is divisible by 8: 
 ...we can just show it’s divisible by 4 and 2? 

No: LCM(2,4) = 4, so a number divisible by 2 and 4 is definitely 
divisible by 4, but not necessarily divisible by 8. 

? 

? 

Breaking down divisibility problems 



Key point: If we’re trying to show a number is divisible by some large number, we 
can break down the problem – if the number we’re dividing by, 𝑛, has factors 𝑎, 𝑏 
such that 𝑛 = 𝑎𝑏 and 𝑎 and 𝑏 are coprime, then we show that 𝑛 is divisible by 𝑎 
and divisible by 𝑏. Similarly, if 𝑛 = 𝑎𝑏𝑐 and 𝑎, 𝑏, and 𝑐 are all coprime, we show 
it’s divisible by 𝑎, 𝑏 and 𝑐. 

If we want to show a number is divisible by 24: 

We can show it’s divisible by 3 and 8 ? 
(Note, 2 and 12 wouldn’t be allowed because they’re not coprime. That same applies for 4 and 6) 

Which means we’d have to show the number has 
the following properties: 
1. Its last 3 digits are divisible by 8. 
2. Its digits add up to a multiple of 3. ? 

Breaking down divisibility problems 



[Hamilton 2006 Q1] Find the smallest positive integer which 
consists only of 0s and 1s, and which is divisible by 12. 

Answer: 11100 

A number divisible by 12 must be divisible by 3 and 
4. If divisible by 4, the last two digits are divisible 
by 4, so most digits must be 0. 
If divisible be three, the number of 1s must be a 
multiple of 3. For the smallest number, we have 
exactly 3 ones. 

? 

Breaking down divisibility problems 



Explain why 𝒌 and 𝒌 + 𝟏 are coprime for any positive 
integer 𝑘. 

Answer: 
Suppose 𝑘 had some factor 𝑞. Then 𝑘 + 1 must have a 
remainder of 1 when divided by 𝑞, so is not divisible by 𝑞. 

The same reasoning underpins Euclid’s proof that there are infinitely many 
primes. Suppose we have a list of all known primes: 𝑝1,𝑝2, … , 𝑝𝑛. Then consider 
one more than their product, 𝑝1𝑝2 …𝑝𝑛 + 1. This new value will always give a 
remainder of 1 when we divide by any of the primes 𝑝1 to 𝑝𝑛. If it’s not divisible 
by any of them, either the new number is prime, or it is a composite number 
whose  prime factors are new primes. Either way, we can indefinitely generate 
new prime numbers. 

? 

Breaking down divisibility problems 



If 𝑘 is odd, will 𝑘 − 1 and 𝑘 + 1 be coprime? 
Answer: 
No. Because k-1 and k+1 will be contain a factor of 2. 

If 𝑘 is even, will 𝑘 − 1 and 𝑘 + 1 be coprime? 
Answer: 
Yes. If a number d divides k-1, then the remainder will be 2 when k+1 
is divided by d. Thus the divisor could only be 2, but k-1 is odd. 
Therefore there can be no common factor. 

? 

? 

These are two very useful facts that I’ve seen come up in a lot of problems. 
We’ll appreciate their use more later: 
1. 𝒌 and 𝒌 + 𝟏 are coprime for any positive integer 𝒌. 
2. 𝒌 − 𝟏 and 𝒌 + 𝟏 are coprime if 𝒌 is even. 

Coprime 



 Part 2: Factors and Divisibility 

 Topic 2 – Number Theory 



   Using the prime factorisation 
Finding the prime factorisation of a number has a number of useful 
consequences. 

360 = 23 × 32 × 5 ? 

We’ll explore a number of these uses... 



Using the prime factorisation 

360 = 23 × 32 × 5 

If the powers of each prime factor are even, then the number 
is a square number (known also as a “perfect square”). 
For example 24 × 32 × 52 = 22 × 3 × 5 2. So the smallest 
number we need to multiply by to get a square is 2 × 5 = 10, 
as we’ll then have even powers. 

Handy Use 1: Smallest multiple that’s a square or cube number? 

Smallest multiple of 360 that’s a perfect square = 3600 ? 



Using the prime factorisation 

360 = 23 × 32 × 5 

Handy Use 1: Smallest multiple that’s a square or cube number? 

If the powers of each prime factor are multiples of three, then 
the number is a cube number. 
For example 23 × 36 × 53 = 2 × 32 × 5 3. So the smallest 
number we need to multiply by to get a square is 3 × 52 = 75. 

Smallest multiple of 360 that’s a cube = 27000 ? 



27 × 32 × 54 

Q1) How many zeros does this number have on the end?  

Handy Use 2: Number of zeros on the end? 

Q2) What’s the last non-zero digit? 

Answer: 4.  27 x 32 x 54 = 23 x 32 x (2 x 5)4 

  = 23 x 32 x 104 ? 

Answer: Using the factors we didn’t combine to make 
2-5 pairs (i.e. factors of 10), we have 23 x 32 left. This 
is 72, so the last non-zero digit is 2. 

? 

Using the prime factorisation 



   Using the prime factorisation 

50! 

What is the highest power of 10 that’s a factor of: 

Handy Use 2: Number of zeros on the end? 

1000! 

Answer: 12 
50! = 50 x 49 x 48 x ... We know each prime factor of 2 and 5 gives us 
a power of 10. They’ll be plenty of factors of 2 floating around, and 
less 5s, so the number of 5s give us the number of pairs. In 50 x 49 x 
48 x ..., we get fives from 5, 10, 15, etc. (of which there’s 10). But we 
get an additional five from multiples of 25 (of which there’s 2). So 
that’s 12 factors of 10 in total. 

Answer: 249 
Within 1000 x 999 x ... , we get prime factors of 5 from each multiple 
of 5 (of which there’s 200), an additional 5 from each multiple of 25 
(of which there’s 40), an additional 5 from each multiple of 125 (of 
which there’s 8) and a final five from each multiple of 625 (of which 
there’s just 1, i.e. 625 itself). That’s 249 in total. 

? 

? 



   Using the prime factorisation 

What is the highest power of 10 that’s a factor of: 

Handy Use 2: Number of zeros on the end? 

In general, 𝑛! 

log5 𝑛 gives us power of 5 that results in 𝑛. So rounding this down, 
we get the largest power of 5 that results in a number less than 
𝑛. 𝑥  is known as the ‘floor function’ and rounds anything inside 
it down. So log5 1000 = 4. Then if 𝑘 is the power of 5 we’re 
finding multiples of, there’s 𝑛/5𝑘 of these multiples (after we 
round down).  

Σ𝑘=1
log5 𝑛 𝑛

5𝑘
 

? 



  

[SMC 2005 Q24] For how many positive integer values of 𝑘 less than 50 is it 
impossible to find a value of 𝑛 such that 𝑛! ends in exactly 𝑘 zeros? 

A: 0 

 

    

  

  B: 5   C: 8 

D: 9   E: 10 

When 𝑛! is written in full, the number of zeros at the end of the number is equal to the power of 5 
when 𝑛! is written as the product of prime factors.  We see that 24! ends in 4 zeros as 5, 10, 15 and 20 
all contribute one 5 when 24! is written as the product of prime factors, but 25! ends in 6 zeros 
because 25 = 5 × 5 and hence contributes two 5s. So there is no value of 𝑛 for which 𝑛! ends in 5 
zeros. Similarly, there is no value of 𝑛 for which 𝑛! ends in 11 zeros since 49! ends in 10 zeros and 50! 
ends in 12 zeros. The full set of values of 𝑘 less than 50 for which it is impossible to find a value of 𝑛 
such that 𝑛! ends in 𝑘 zeros is 5, 11, 17, 23, 29, 30 (since 124! ends in 28 zeros and 125! ends in 31 
zeros), 36, 42, 48. 

Using the prime factorisation 



72576 = 27 × 34 × 7 

A factor can combine any 
number of these prime factors 
together. e.g. 22 × 5, or none 
of them (giving a factor of 1). 

We can use between 0 and 7 
of the 2s to make a factor. 
That’s 8 possibilities. 

Similarly, we can have 
between 0 and 4 threes. 
That’s 5 possibilities. 

And we can either have the 7 
or not in our factor. That’s 2 
possibilities. 

So there’s 
8 × 5 × 2 = 80 
factors 

Handy Use 3: Number of factors? 
Using the prime factorisation 



𝑎𝑞 × 𝑏𝑟 × 𝑐𝑠  

In general, we can add 1 to each of the indices, and 
multiply these together to get the number of factors. 
So above, there would be 𝑞 + 1 𝑟 + 1 𝑠 + 1  
factors. 

Handy Use 3: Number of factors? 
Using the prime factorisation 



How many factors do the following have? 

Handy Use 3: Number of factors? 

50? = 2 × 52  
   so 2 × 3 = 6 factors. 

200? = 23 × 52  
   so 4 × 3 = 12 factors. 

10100? = 2 × 5 100  
= 2100 × 5100  
So 1012 factors 
= 10201 factors. 

20032003? (Note: 2003 is prime) 

This is already prime-
factorised, so there’s 
2004 factors. 

? 

? 

? 

? 

Using the prime factorisation 



Question: How many multiples of 2013 have 2013 factors? 

Hint: 2013 = 3 × 11 × 61 
Use the ‘number of factors’ theorem backwards: If there are 2013 factors, what 
could the powers be in the prime factorisation? 

Solution: Firstly note that any multiple of 2013 must have at least powers of 3, 11 
and 61 in its prime factorisation (with powers at least 1). If there are 2013 
factors, then the product of one more than each of the powers in the prime 
factorisation is 2013. e.g. We could have 32 × 1110 × 6160, since 
2 + 1 10 + 1 60 + 1 = 2013. There’s 3! = 6 ways we could arrange these 

three powers, which all give multiples of 2013. Our multiple of 2013 can’t 
introduce any new factors in its prime factorisation, because the number of 
factors 2013 only has three prime factors, and thus can’t be split into more than 
three indices  

Grey 

Pink 

Int Kangaroo 

  A: 0 

 

  

  

  B: 1 C: 3 

D: 6 E: Infinitely many 

Using the prime factorisation 



We can reason about factors on each side of an equality. 

3𝑛 = 8𝑘 
What do we know about 𝒏 and 𝒌? 

Answer:  
If the LHS is divisible by 3, then so must the RHS. 
And since 8 is not divisible by 3, then k must be. By 
a similar argument, n must be divisible by 8. 

? 

Factors in an equality 



In general, if we know some property of a number, it 
can sometimes help to replace that number with an 
expression that represents that property. 
 
This skill becomes hugely important when 
considering integer solutions for equations. 

𝒏 is even:       Let 𝒏 = 𝟐𝒌 for some integer 𝒌 
𝒏 is odd:       Let 𝒏 = 𝟐𝒌 + 𝟏 
𝒏 is a multiple of 9:      Let 𝒏 = 𝟗𝒌 
𝒏 only has prime factors of 3:    Let 𝒏 = 𝟑𝒌 

𝒏 is an odd square number:     If 𝒃𝟐 =  𝒏 and 𝒏 is odd, 𝒃 must 
        also be odd. So 𝒏 = (𝟐𝒌 + 𝟏)𝟐 

? 
? 
? 

? 

Factors in an equality 



Question: Show that 𝟐𝒏 = 𝒏𝟑 has no integer 
solution for 𝑛. 

Answer:  
Since the LHS only has prime factors of 2, then so must 
the RHS. Therefore let 𝑛 = 2𝑘 for some integer 𝑘. 
Then 22𝑘 = 2𝑘 3 = 23𝑘  and equating indices,  
2𝑘 = 3𝑘. But the RHS is divisible by 3 while the LHS is 
not, leading to a contradiction.    

? 

Factors in an equality 



Question: If 3𝑛2 = 𝑘(𝑘 + 1), then what can we 
say about 𝑘 and 𝑘 + 1? (Recall: 𝑘 and 𝑘 + 1 are coprime) 

Answer:  
If k and k+1 are coprime, they share no factors, so the prime factors 
on the LHS must be partitioned into two, depending whether they 
belong to k or k+1. In n2, each prime factor appears twice, so they 
must both belong to either k or k+1 (but can’t be in both). So far, 
both k and k+1 will both be square, because each prime factor comes 
in twos. This just leaves the 3, which is either a factor of k or k+1. 
Therefore, one of k and k+1 is three times a square, and the other a 
square. 
(An interesting side point: Finding possible n is quite difficult. Using a 
spreadsheet, the only valid n I found up to 10,000 were 2, 28, 390 and 5432.)  

? 

Factors in an equality 



Every other integer is divisible by 2. 
 
Every third integer is divisible by 3. 
 
Every fourth integer is divisible by 4. 

1     2     3     4     5     6     7     8 
 
1     2     3     4     5     6     7     8 
 
1     2     3     4     5     6     7     8 
 

An ‘obvious’ fact that can aid us in solving less 
than obvious problems! 

Divisibility with consecutive integers 



 

  

[SMC 2003 Q13] Which of the following is divisible by 3 
for every whole number x?  

A: 𝑥3 − 𝑥     

  

  B: 𝑥3 − 1   C: 𝑥3 

D: 𝑥3 + 1   E: 𝑥3 + 𝑥 

Since 𝑥3 − 𝑥 = 𝑥 𝑥 − 1 𝑥 + 1 , 𝑥3 − 𝑥 is always the product of 
three consecutive whole numbers when 𝑥 is a whole number. As 
one of these must be a multiple of 3, 𝑥3 − 𝑥 will be divisible by 3. 
Alternatively, substituting 2 for 𝑥 in the expressions in B,C and E 
and substituting 3 for 𝑥 in the expression in results in D numbers 
which are not divisible by 3. 
(Note: We’ll revisit this problem later when we cover modulo 
arithmetic!) 

Divisibility with consecutive integers 



[BMO 2005/06 Q1] Let n be an integer greater 
than 6. Prove that if 𝑛 − 1 and 𝑛 + 1 are both 
prime, then 𝑛2 𝑛2 + 16  is divisible by 720. 

Use what you know! 

If 𝑛 − 1 and 𝑛 + 1 
are both prime, I can 
establish properties 
about 𝑛’s divisibility. 

 

 720 has a factor of 5. 
What expression can 
I form that we know 
will be divisible by 5? 

Solution: As 𝑛 − 1 and 𝑛 + 1 are prime, 𝑛 must be divisible 
by 2 (since 𝑛 > 6). Thus 𝑛2 𝑛2 + 16  is divisible by 24, as 𝑛4 
and 16𝑛2 both are. 
One of 𝑛 − 1, 𝑛 and 𝑛 + 1 must be divisible by 3, but since 
𝑛 − 1 and 𝑛 + 1 are prime, 𝑛 must be divisible by 3. 
Therefore 𝑛2(𝑛2 + 16) must be divisible by 9, as 𝑛2 is.  
One of 𝑛 − 2, 𝑛 − 1, 𝑛, 𝑛 + 1 and 𝑛 + 2 are divisible by 5. 
𝑛 − 1 and 𝑛 + 1 can’t be as they’re prime. Therefore 
𝑛 − 2 𝑛 𝑛 + 2 = 𝑛3 − 4𝑛 is a multiple of 5. We now need 

to somehow relate this to 𝑛2 𝑛2 + 16 = 𝑛4 + 16𝑛2. If  
𝑛3 − 4𝑛 is divisible by 5, then 𝑛4 − 4𝑛2 is, and 𝑛4 − 4𝑛2 +
20𝑛2 is because 20𝑛2 is clearly divisible by 5. Therefore 
𝑛2(𝑛2 + 16) is divisible by 5. 
Thus, 𝒏𝟐(𝒏𝟐 + 𝟏𝟏)  is divisible by 𝟐𝟒 × 𝟑𝟐 × 𝟓 = 𝟕𝟐𝟕.   

? 

Divisibility with consecutive integers 



 Part 3: Diophantine Equations 

 Topic 2 – Number Theory 



   What is a Diophantine Equation? 
An equation for which we’re looking for integer solutions. 
Some well-known examples: 

When n=2, solutions known as 
Pythagorean triples. No solutions 
when n>2 (by Fermat’s Last Theorem). 

𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 

3𝑥 + 4𝑦 = 24 Linear Diophantine Equation. 

Erdos-Staus Conjecture states that 4/n 
can be expressed as the sum of three 
unit fractions (unproven). 

𝑥2 − 𝑛𝑦2 = 1 
Pell’s Equation. Historical interest because it 
could be used to find approximations to square 
roots. e.g. If solutions found for x2 – 2y2 = 1, x/y 
gives an approximation for √2 



To reason about factors in an equality, it often helps to get it into a form where 
each side is a product of expressions/values.  

(𝑥 − 6)(𝑦 − 10) = 15 

Example: How many positive integer solutions for the 
following? 

Answer: 6. Possible (x,y) pairs are (7, 25), (9, 15),  
(11, 13), (21, 11), (3, 5), (1, 7) ? 

The RHS is 15, so the multiplication on the LHS must be  
1 × 15, 3 × 5, 5 × 3, 15 × 1, −1 × −15, −3 × −5, etc. So for 
the first of these for example, 𝑥 − 6 = 1 and 𝑦 − 10 = 15, so 
𝑥 = 7 and 𝑦 = 25. Make sure you don’t forget negative factors.  

Factors in an equality 



[Hamilton 2011 Q3] A particular four-digit number 𝑁 is such that: 
(a) The sum of 𝑁 and 74 is a square; and 
(b) The difference between 𝑁 and 15 is also a square. 
What is the number 𝑁? 

Step 1: Represent algebraically: 

𝑁 = 74 = 𝑞2 
𝑁 − 15 = 𝑟2  

Step 2: Combine equations in some 
useful way. 

“Perhaps if I subtract the second from 
the first, then I’ll get rid of 𝑁, and have 
the difference of two squares on the 
RHS!” 𝟖𝟗 = 𝒒 + 𝒓 𝒒 − 𝒓  

Conveniently 89 is prime, and since 𝑞 + 𝑟 
is greater than 𝑞 − 𝑟, then 𝑞 + 𝑟 = 89 
and 𝑞 − 𝑟 = 1. 
Solving these simultaneous equations 
gives us 𝑞 = 45 and 𝑟 = 44.  
Using one of the original equations:  

𝑁 = 𝑞2 − 75 = 452 − 74 = 𝟏𝟗𝟓𝟏 

Step 3: Reason about factors 

? 

? 

? 

Forming a Diophantine Equation 
You should try to form an equation where you can reason about factors in this 
way! 



[BMO 2011/12 Q1] Find all positive values of 𝑛 for which 
𝑛2 + 20𝑛 + 11 is a (perfect) square. 
Hint: Perhaps complete the square? 

Solution: 𝒏 = 𝟑𝟓. 
𝑛2 + 20𝑛 + 11 = 𝑘2 for some integer 𝑘. 
𝑛 + 10 2 − 100 + 11 = 𝑘2           𝑛 + 10 2 − 𝑘2 = 89  
𝑛 + 10 − 𝑘 𝑛 + 10 + 𝑘 = 89  

 
89 is prime. And since 𝑛 + 10 + 𝑘 > 𝑛 + 10 − 𝑘,  
𝑛 + 10 + 𝑘 = 89 and 𝑛 + 10 − 𝑘 = 1. 
Using the latter, 𝑘 = 𝑛 + 9 
So substituting into the first, 𝑛 + 10 + 𝑛 + 9 = 89. 
2𝑛 = 70, so 𝑛 = 35. 

For problems involving a square number, the ‘difference of two 
squares’ is a handy factorisation tool! 

? 

Aim to factorise your equation. 

Forming a Diophantine Equation 



[BMO 2012/13 Q4] Find all positive integers 𝑛 such that 
12𝑛 − 119 and 75𝑛 − 539 are both perfect squares. 

Based on the strategy on the previous question, we might have tried one 
equation subtracting the other to get the difference of two squares: 

12𝑛 − 119 = 𝑘2  1         
75𝑛 − 539 = 𝑞2  (2) 
2 − 1 :     63𝑛 − 420 = (𝑞 + 𝑘)(𝑞 − 𝑘)      

But this is a bad strategy, because unlike before, we haven’t eliminated the 
variable on the LHS, and thus the above equation isn’t particularly useful. 
How could we deal with just 2 variables? 

There’s a variety of different strategies to factorise a Diophantine Equation. 

Forming a Diophantine Equation 

Make 𝑛 the subject of each to get: 
𝑘2 + 119

12
=
𝑞2 + 539

75
 5𝑘 + 2𝑞 5𝑘 − 2𝑞  

        = 32 × 91 ? 



[Maclaurin 2008 Q3] Show that the following equation 
has no integer solutions: 

1
𝑥

+
1
𝑦

=
5

11
 

Questions of this form are quite common, particularly in the Senior Maths 
Challenge/Olympiad. And the approach is always quite similar... 

Step 1: It’s usually a good strategy in algebra to get rid of fractions: so multiply 
through by the dominators.  

11𝑥 + 11𝑦 = 5𝑥𝑦 ? 

Manipulating a Diophantine Equation 
Aim to factorise your equation. 



Step 2: Try to get the equation in the form (𝑎𝑥 − 𝑏)(𝑎𝑦 − 𝑐) = 𝑑 

11𝑥 + 11𝑦 = 5𝑥𝑦 

This is a bit on the fiddly side but becomes easier with practice. 
Note that 𝒙 + 𝟏 𝒚 + 𝟏 = 𝒙𝒚 + 𝒙 + 𝒚 + 𝟏 
Similarly 𝒂𝒙 − 𝒃 𝒂𝒚 − 𝒄 = 𝑎2𝒙𝒚 − 𝑎𝑐𝒙 − 𝑎𝑏𝒚 + 𝑏2 

So initially put the equation in the form 5𝑥𝑦–11𝑥–11𝑦 = 0 
Looking at the form above, it would seem to help to multiply by the 
coefficient of 𝑥𝑦 (i.e. 5), giving 𝟐𝟓𝒙𝒚–𝟓𝟓𝒙–𝟓𝟓𝒚 = 𝟕 
This allows us to factorise as (5x – 11)(5y – 11) – 121 = 0. 
The “-121” is because we want to ‘cancel out’ the +121 the results 
from the expansion of (5x – 11)(5y – 11). 
 

So (𝟓𝒙 –𝟏𝟏)(𝟓𝒚 –𝟏𝟏)  =  𝟏𝟐𝟏 

Manipulating a Diophantine Equation 
Aim to factorise your equation. 



Step 3: Now consider possible factor pairs of the RHS as before. 

𝟓𝒙 − 𝟏𝟏 𝟓𝒚 − 𝟏𝟏 = 𝟏𝟐𝟏 

Since the RHS is 121 = 112, then the left hand brackets must be 1 × 121 
or 11 × 11 or 121 × 1 or −1 × −121, etc. (don’t forget the negative 
values!) 
 
If 5𝑥 − 11 = 1, then 𝑥 is not an integer. 
If 5𝑥 − 11 = 11, then 𝑥 is not an integer. 
If 5𝑥 − 11 = −1, then 𝑥 = 2, but 5𝑦 − 11 = −121, where 𝑦 is not an 
integer. 
(And for the remaining three cases, there is no pair of positive integer 
solutions for 𝑥 and 𝑦) 

Manipulating a Diophantine Equation 
Aim to factorise your equation. 



Let’s practice! Put in the form 𝑎𝑥 − 𝑏 𝑎𝑦 − 𝑐 = 𝑑 

𝒙 − 𝟏 𝒚 − 𝟏 = 𝟏 

𝟐𝒙 − 𝟑 𝟐𝒚 − 𝟑 = 𝟗 

𝟑𝒙 − 𝟏𝟗 𝟑𝒚 − 𝟑𝟖 = 𝟕𝟐𝟐 

𝟒𝒙𝒚 − 𝟓𝒙 − 𝟕𝒚 = 𝟕 (𝟒𝒙–𝟕)(𝟒𝒚–𝟓) = 𝟑𝟓 
7
𝑥

+
5
𝑦

= 4 

𝒙𝒚 − 𝒙 − 𝒚 = 𝟕 

𝟐𝒙𝒚 − 𝟑𝒙 − 𝟑𝒚 = 𝟕 

-5 and -7 
swap 

positions. 

(-5) x (-7) Use the 4 
from 4𝑥𝑦 

𝟑𝒙𝒚 − 𝟑𝟖𝒙 − 𝟏𝟗𝒚 = 𝟕 

? ? 

? ? 

? ? 

In general, this technique is helpful whenever we have a mixture 
of variables both individually and as their product, e.g. 𝑥, 𝑦 and 

𝑥𝑦, and we wish to factorise to aid us in some way.. 

Now for each of these, try 
to find integer solutions 

for 𝑥 and 𝑦! (if any) 

(Source: SMC) 

Manipulating a Diophantine Equation 

1
𝑥

+
1
𝑦

= 1 

3
𝑥

+
3
𝑦

= 2 

1
𝑥

+
2
𝑦

=
3

19
 



Suppose you are determining possible values of a variable in 
a division, aim to get the variable in the denominator only. 

Example: How many positive integer solutions for 𝑛 given 
that the following is also an integer: 

We can rewrite this as: 

Now 𝑛 is just in the denominator. We can see that whenever 100 − 𝑛 divides 100, 
the fraction yields an integer. This gives 99, 98, 96, 95, 89, 79, 75, 50 

(Alternatively, you could 
have used algebraic long 
division, or made the 
substitution 𝑘 = 100 − 𝑛) 

Dealing with divisions 

𝑛
100 − 𝑛

 

100 − 100 − 𝑛
100 − 𝑛

=
100

100 − 𝑛
− 1 

? 



Dealing with divisions 

  

[SMC 2005 Q21] What is the sum of the values of 𝑛 for which both 𝑛 and 𝑛
2−9
𝑛−1

 are 
integers? 

A: -8 

 

    

  

  B: -4   C: 0 

D: 4 E: 8 

Note that 𝑛2 − 1 is divisible by 𝑛 − 1. Thus:  
𝑛2−9
𝑛−1

= 𝑛2−1
𝑛−1

− 8
𝑛−1

= 𝑛 + 1 − 8
𝑛−1

. So 𝑛 − 1 must divide 8.  
 
The possible values of 𝑛 − 1 are −8, −4, −2, −1, 1, 2, 4, 8, so 𝑛 is −7, −3, −1, 
0, 2, 3, 5, 9. The sum of these values is 8. 
(Note that the sum of the 8 values of 𝑛 − 1 is clearly 0, so the sum of the 8 
values of 𝑛 is 8.) 

In a division, sometimes we can analyse how we can modify the dividend so that it 
becomes divisible by the divisor. 



Dealing with surd expressions 
For Diophantine Equations involving surds, remember that the contents of the 
surd must be a square number. Square each side of the equation. 

[SMC 2000 Q24] How many pairs of positive integers 
𝑥,𝑦 satisfy the equation:  𝑥 − 17 = 𝑦. 

  A: 0 

 

    

  

  B: 1   C: 2 

D: 17 E: ∞ 

Squaring both sides: 
𝑥 − 2 17𝑥 + 17 = 𝑦 

If 𝑦 is an integer, then 17𝑥 must be an integer. This will be the case when 
𝑥 = 17𝑘2 for any positive integer 𝑘 (except 1, because then 𝑦 would be 0). 
But there’s infinitely many choices for 𝑘, thus there’s infinitely many solutions 
for 𝑥, 𝑦. 



   Restricting integer solutions 
When you have to find all integer solutions to some equation, there’s usually 
some way to round down your search. 

[Cayley 2011 Q5] Solve the equation 5𝑎 − 𝑎𝑏 = 9𝑏2, where 𝑎 and 𝑏 are 
positive integers. 

Answer: 𝑎 = 12,𝑏 = 2, and 𝑎 = 144,𝑏 = 4. 

Hint: What do we know about the RHS of the equation? 
What do this then tell us about 5𝑎 and 𝑎𝑏?  

? 

9𝑏2 ≥ 0, therefore 𝑎𝑏 ≤ 5𝑎. And since 𝑎 is positive, then dividing both sides by 𝑎 gives us 𝑏 ≤ 5. 
This means we only need to try 𝑏 = 1, 2, 3, 4 and 5! 
 
If we sub in b = 1, we get 4a = 9, for which there’s no integer solution. 
Continuing with possible b, we eventually find all our solutions. 
 
In general, look out for things that are squared, as we know their value must be at 
least 0 (nonnegative). 



Try to get whatever equation you have as a product on each side, so 
that you can reason about the factors. e.g. 𝑥 + 10 𝑥 − 6 = 100 

You can occasionally use the difference of two squares to factorise. e.g: 
103𝑥 + 𝑥 + 1 = 𝑘2 
→   103𝑥 + 𝑥 = 𝑘2 − 1 
= 1001𝑥 = (𝑘 + 1)(𝑘 − 1) 

Once factorised, you need to consider possibilities for the factors on each 
side. Don’t forget negative factors. 

You can use number theory knowledge to round down what factors could be. 
e.g. If you have 𝑘2, then prime factors in 𝑘 come in pairs. 
e.g. If you have two factors that are consecutive, they are coprime and thus 
share no factors. 

1 

2 

4 

5 

3 
To factorise, you might need to think backwards to determine what could 
expand to get the terms you have. e.g. If you have 𝑥, 𝑦 and 𝑥𝑦 in your 
expression, then 𝑥 + 1 𝑦 + 1  would expand to give all 3 of these. 
In some contexts you can complete the square. 

Diophantine Equation Summary 



 Part 4: Modular Arithmetic 

 Topic 2 – Number Theory 



On a digital clock, were we to 
specify the hour as “27”, what we’d 
actually mean is 3 in the morning. 
 
These hours are the same in 
“modulo 24 arithmetic”, i.e. our 
numbers are limited to 0 to 23, 
after which they loop back round. 
 

27 ≡ 3 (mod 24)  

We’d say “27 is congruent to 3 
modulo/mod 24” 

What the devil is it? 



Numbers in modulo 𝑘 arithmetic are all equivalent to numbers 
in the range 0 to 𝑘 − 1, where they then repeat. 
 

0, 1, 2, 3, 4, 5, 6, 7, ... ≡ 0, 1, 2, 0, 1, 2, 0, 1, ... (mod 3) 

This operator usually means ‘equivalent’, and in 
this context more specifically means ‘congruent’. 

We can use modulo arithmetic to represent the remainder 
(also known as the residue) when we divide by some number.  
 

4 ≡ 1 (𝑚𝑚𝑑 3)         15 ≡ 3 (𝑚𝑚𝑑 4) 
−1 ≡ 4 (𝑚𝑚𝑑 5) 

 

What the devil is it? 



How would we represent 3|𝑥? 

𝑥 ≡ 0 𝑚𝑚𝑑 3  

What the devil is it? 

How would we represent “𝑥 is one less than 
a multiple of 5”. 

𝑥 ≡ 4 𝑚𝑚𝑑 5  
Or we could even use 𝑥 ≡ −1 (𝑚𝑚𝑑 5). 
We’ll see why that might be useful later. 

? 

? 



Addition works just as if it was a normal equality. 

If 4 ≡ 1(mod 3) then 4 + 5 ≡ 1 + 5 (mod 3)  

Multiplication also works. 

If 4 ≡ 1(mod 3) then 8 ≡ 2(mod 3)  

Exponentiation also works (this one we’ll use a lot!). 

If 5 ≡ 2(mod 3) then 5k ≡ 2k (mod 3) for any k  

Properties of Modular Arithmetic 



Quickfire Examples 

Given that 73 ≡ 1 (𝑚𝑚𝑑 4) 
Then 146 ≡ 2 (𝑚𝑚𝑑 4) 

Given that 107 ≡ 3 (𝑚𝑚𝑑 13) 
Then 110 ≡ 6 (𝑚𝑚𝑑 13) 

Given that 17 ≡ 1 (𝑚𝑚𝑑 16) 
Then 17100 ≡ 1100 ≡ 1 (𝑚𝑚𝑑 16) 

Given that 17 ≡ 2 (𝑚𝑚𝑑 15) 
Then 170 ≡ 20 ≡ 5 (𝑚𝑚𝑑 15) 

? 

? 

? 

? 



Multiplication also works. 

If 𝑎 ≡ 𝑏 𝑚𝑚𝑑 𝑐 , then 𝑘𝑎 ≡ 𝑘𝑏 𝑚𝑚𝑑 𝑐   
e.g. If 4 ≡ 1 (𝑚𝑚𝑑 3), then 8 ≡ 2 𝑚𝑚𝑑 3  

Properties of Modular Arithmetic 

But is the converse always true? 
i.e. If 𝑘𝑎 ≡ 𝑘𝑏 𝑚𝑚𝑑 𝑐 , then is 𝑎 ≡ 𝑏 𝑚𝑚𝑑 𝑐 ? 
If not, can you think of a counterexample? 
No. For example, note that 12 ≡ 4 𝑚𝑚𝑑 8 , but 3 ≢ 1 𝑚𝑚𝑑 8  when we 

divide each number by 4. 
However, it IS true when the number we’re dividing by is coprime to the 

modulo, i.e. 𝑘, 𝑐 = 1. 
 

e.g. 42 ≡ 7 𝑚𝑚𝑑 5 . i.e. 7 × 6 ≡ 7 × 1 𝑚𝑚𝑑 5 .  
But 5 and 7 are coprime, so 6 ≡ 1 𝑚𝑚𝑑 5   

 

? 



Properties of Modular Arithmetic 

Another common misconception (according to a BMO veteran) is that if: 
 

𝑎 ≡ 𝑐  (𝑚𝑚𝑑 𝑛) and 𝑏 ≡ 𝑑 𝑚𝑚𝑑 𝑛  
 

then: 
 

𝑎𝑏 ≡ 𝑐𝑑  𝑚𝑚𝑑 𝑛  
 

This is not in general true! 
I’ll leave it as an exercise to find a counterexample… 



Often, it helps to consider all the possible residues. 

Let’s use modulo-3 arithmetic: 
 
The given sequence: 
2, 5, 8, 11, ... ≡ 2, 2, 2, 2, ... (mod 3) 
 
The natural numbers: 
0, 1, 2, 3, 4, 5, ... ≡ 0, 1, 2, 0, 1, 2, ... (mod 3) 
Then by the laws of modulo arithmetic: 
02, 12, 22, 32, 42, 52, ... ≡ 02, 12, 22, 02, 12, 22, ... (mod 3) 
   ≡ 0, 1, 1, 0, 1, 1, ... (mod 3) 
 
We can see therefore that the square numbers only give a remainder of 0 or 1 
when divided by 3, so we never see any of the numbers on the sequence. 
 

Question: Show that the arithmetic sequence 2, 5, 8, 11, ... 
does not contain a square number. 

? 

Using Laws of Modular Arithmetic 



   

  

[SMC 2005 Q14] A square number is divided by 6. 
Which of the following could not be the remainder? 

A: 0   

  

B: 1 C: 2 

D: 3 E: 4 

When divided by 6, a whole number leaves remainder 0, 1, 2, 3, 4 or 5. So the 
possible remainders when a square number is divided by 6 are the 
remainders when 0, 1, 4, 9, 16 and 25 are divided by 6. These are 0, 1, 4, 3, 4 
and 1 respectively, so a square number cannot leave remainder 2 (or 
remainder 5) when divided by 6.. 

Using laws of Modular Arithmetic 



 

  

Problem Revisited! 
Which of the following is divisible by 3 for every whole 
number 𝑥? (Now answer using modular arithmetic) 

A: 𝑥3 − 𝑥     

  

  B: 𝑥3 − 1   C: 𝑥3 

D: 𝑥3 + 1   E: 𝑥3 + 𝑥 

If for the natural numbers. 𝑥 ≡ 0,1,2 𝑚𝑚𝑑 3  then: 
𝑥3 ≡ 0,1,8 ≡ 0,1,2 (𝑚𝑚𝑑 3) 

Then 𝑥3 − 𝑥 ≡ 0 − 1, 1 − 1, 2 − 2 ≡ 0,0,0 (𝑚𝑚𝑑 3) 
i.e.  For all numbers of 𝑥, 𝑥3 − 𝑥 gives us a remainder of 0 
when dividing by 3. 

Using laws of Modular Arithmetic 



22 

22 

A square chessboard of 
sides 2𝑛 (for any 𝑛) is tiled 
with L-shapes, each of 3 
squares, such that tiles 
don’t overlap. 
Show that you will always 
have 1 square on the 
chessboard left untiled. 

Source: Frosty Special 

Solution: We’re finding the remainder when we  
divide 2𝑛 2 = 22𝑛 = 4𝑛 by 3. 
4 ≡ 1 (𝑚𝑚𝑑 3). So 4𝑛 ≡ 1𝑛 ≡ 1 (𝑚𝑚𝑑 3). 

? 

Using laws of Modular Arithmetic 



[BMO 1999/2000 Q2] Show that, for every positive integer 𝑛, 
121𝑛 − 25𝑛 + 1900𝑛 − −4 𝑛is divisible by 2000. 
Hint: 2000 = 24 x 53, thus the only two coprime factors are 16 and 125. 

Solution: If 121 ≡ 9 (mod 16), then 121n ≡ 9n (mod 16). Similarly 25 ≡ 9 (mod 16) 
means that 25n ≡ 9n (mod 16). Conveniently, since the second is subtracted, we’re 
left with 0 (mod 16) so far. 1900n ≡ 12n (mod 16) and (-4)n ≡ 12n (mod 16), where 
with the latter we’ve just added 16 to make the remainder positive. These again 
cancel, so overall we have 0 (mod 16), meaning that the expression is divisible by 
16. 
  
Can use the same principle to show it’s divisible by 125. 

? 

Using laws of Modular Arithmetic 



Answer: 
(Method 1) All powers in the prime 
factorisation of a square number are even, so 
if a factor of 2 appears (which it does because 
the square is even), it must appear at least 
twice, so the square is divisible by 4. 
 
(Method 2) If 𝑛2 is even, then 𝑛 must be even 
since even × even = even.  
Let 𝑛 = 2𝑘. Then 𝑛2 = 2𝑘 2 = 4𝑘2, which 
is clearly divisible by 4. 

We’ve so far seen that it can sometimes be useful to consider the possible residues 
of a square number to eliminate possibilities (as we’ll see for an upcoming 
example).  

There’s other handy properties to add to our ‘toolkit’: 

Prove that if that if a square number is 
even, then it’s divisible by 4. 

Prove that if a square number is odd, then 
it’s one more than a multiple of 8. 

Answer: 
Note first that if a square 𝑛2 is odd, then 𝑛 is odd 
since odd × odd = odd. 
 
(Method 1) We need to show one less than a square 
is divisible by 8. 
𝑛2 − 1 = 𝑛 − 1 𝑛 + 1 . Both 𝑛 − 1 and 𝑛 + 1 are 
even. But one must be divisible by 4. So we get a 
factor of 4 from one and 2 from the other, thus it is 
divisible by 8. 
 
(Method 2) If 𝑛 is odd then let 𝑛 = 2𝑘 + 1. 
2𝑘 + 1 2 = 4𝑘2 + 4𝑘 + 1 = 4𝑘 𝑘 + 1 + 1. One 

of 𝑘 and 𝑘 + 1 is even, so 4𝑘(𝑘 + 1) is divisible by 8. 

? ? 

Useful properties of square numbers 



Question: If 3𝑛2 = 𝑘 𝑘 + 1 , then what can we 
say about 𝑘 and 𝑘 + 1? (Recall: 𝑘 and 𝑘 + 1 are coprime) 

We previously established that either 𝒌 is a square and 𝒌 + 𝟏 is 
three times a square, or vice versa. We can eliminate one of these 
cases using modular arithmetic. 

Case 1: 𝑘 = 𝑎2 and  
        𝑘 + 1 = 3𝑏2 

If 𝑘 + 1 is a multiple of 3, then 𝑘 has 
a residue of 2 modulo 3. But, we 
earlier saw square numbers can only 
have residues of 0 or 1 modulo 3. 
This contradicts that 𝑘 is a square. 
We’ve eliminated this as a case. 

? 

Key Point: Modular Arithmetic can be useful to reason about what numbers can and can’t be. 

Another problem revisited… 



Suppose we’re working in modulo 7 arithmetic, and that we 
start with a number 3, and find successive multiples:  

3, 6, 9, 12, 15, 18, 21   
  ≡   3, 6, 2, 5, 1, 4, 0 (mod 7)  

Notice that we get all possible remainders/residues. Under what 
conditions do you think this happens? 
 
When the modulo (in this case 7) and the difference  
(in this case 3) are coprime. 
We say we have a complete residue system if we have all residues. 

? 

We can see that because the last residue is 0, this number will be divisible by 7. 
i.e. Every 7th number will be divisible by 7 under the above conditions. 

Multiples and Residues 

Presenter
Presentation Notes
Would be easily to illustrate with 0, 1, 2, 3 (mod 4) -> 0, 3, 6, 9 (mod 4) -> 0, 3, 2, 1 (mod 4)



[BMO 2004/05 Q4] Determine the least possible value of the largest 
term in an arithmetic progression of seven distinct primes.. 
Hint: If a is the first value and d is the difference, what properties must d have to 
avoid being divisible by something? 

Round 2 

Round 1 

BMO 

Solution: 907 
If our first number is prime, it’s clear that if the difference WASN’T a multiple of 2, then 
every other number would be even. In terms of the theory on the last slide, we know we will 
see all possible residues (i.e. 0 and 1) in modulo-2 arithmetic if the number we’re finding 
multiples of, i.e. d, is not divisible by 2. Those with residues 0 will be divisible by 2 (unless it 
is 2 itself) and thus not prime. 
The same applies with 3 and 5 (the next two primes) so d must be divisible by these to avoid 
residues of 0 every 3 and 5 numbers respectively. 
7 however is more interesting.  In modulo-7 arithmetic, the first number a could be 7 – 
while divisible by 7, it’s clearly prime. This means that a needn’t be a multiple of 7 since it’s 
possible we won’t see a residue of 0 again until 7 numbers later in  
the list (i.e. beyond the end of our list!). 
So let’s make a = 7, and d a multiple of 2 x 3 x 5 = 30. After trying a  
few multiples of 30, we’ll find that d = 150. So the last number is  
a + (n-1)d = 7 + (6x150) = 907 

? 

Multiples and Residues 



A bit of extra context for this problem: 

In the introduction, we saw Dirichlet’s Prime Number Theorem: “All arithmetic 
sequences, where the initial term and the common difference are coprime, 
contain an infinite number of prime numbers.”  

3, 7, 11, 15, 19, ... 
14, 16, 18, 20, 22, ... 

3 and 4 are coprime, so sequence 
will contain infinitely many prime 
numbers. 

But 14 and 2 are not coprime. 

As recently as 2004, it was proven that the sequence of prime numbers contains an 
arbitrarily long arithmetic progression. i.e. We can find an arithmetic sequence of any 
length. (This is now known as the Green-Tao Theorem) 
e.g. 3, 5, 7 and 47, 53, 59 are prime arithmetic sequences of length 3. 
 
The theorem however only proves their existence; it doesn’t provide a method to find 
a sequence of a given length. The longest sequence found so far is of length 26. 
 
 

Multiples and Residues 



   Dealing with remainders 
If 𝒙 divided by 𝒚 gives a remainder of 𝒛, then 𝒙 − 𝒛 is divisible by 𝒚.  

For example, consider that 53 divided by 10 gives a remainder of 3. 
Then obviously 53 – 3 = 50 is divisible by 10. 

[Kangaroo Pink 2012 Q7] When 144 is divided by the positive 
integer 𝑛, the remainder is 11. When 220 is divided by the positive 
integer 𝑛, the remainder is also 11. What is the value of 𝑛? 

  A: 11 

 

  

  

  B: 15 C: 17 

D: 19 E: 38 

By our above rule, 𝑛 divides 144 – 11 = 133 and 220 – 11 = 209.  
133 = 19 x 7 and 209 = 19 x 11 
So both are divisible by 19. 



Sometimes it can be more convenient to put our remainder as a 
negative number for purposes of manipulation. 
For example, if the remainder when we divide a number by 3 is 2, then we 
could also say this remainder is -1 because they are congruent.  
By laws of modular arithmetic, 2n ≡ (-1)n (mod 3). We can more easily see the 
remainder oscillates between -1 (i.e. 2) and 1 as n increases. 

2n + 3n ≡ (-1)n (mod 3) ? 

3 ≡ -2 (mod 5) 

7 ≡ -3 (mod 10) 

? 

? 

Negative remainders 



Hint: See what you find modulo 3 and modulo 5. 
 
Properties of 𝒏 discovered in modulo 3: 
2𝑛 + 3𝑛 ≡ −1 𝑛 . But all squares are 0 or 1 modulo 3, so 𝒏 must be even or the 
remainder will be 2. So let 𝑛 = 2𝑘. 
Using this information, we now we have 22𝑘 + 32𝑘 = 4𝑘 + 9𝑘. 
 
Properties of n discovered in modulo 5: 

4𝑘 + 9𝑘 ≡ −1 𝑘 + −1 𝑘 ≡ ±2 
Since our number has to be square, consider possible residues modulo-5: these are 0, 1 
and 4. This doesn’t include 2 or 3 (i.e. -2). 
We have therefore shown 2𝑛 + 3𝑛 can never be a perfect square. 
 

An extremely useful method is to consider your equation in 
different moduli to see if we can discover anything about the 
variables. 

Question: Is 2𝑛 + 3𝑛 ever a perfect square? [Source OEIS] 

? 

? 

Playing with different moduli 



Playing with different moduli 

Show that 𝑥2 − 𝑦2 = 2002 has no integer solutions. 
(Hint: try using mod 4) 

Since 𝑥 ≡ 0, 1, 2, 3 𝑚𝑚𝑑 4 , we have 𝑥2 ≡ 0, 1 𝑚𝑚𝑑 4 . 
Similarly 𝑦2 ≡ 0, 1 𝑚𝑚𝑑 4 . 
 
So then considering all possibilities, 𝑥2 − 𝑦2 ≡ 0, 1, 3 𝑚𝑚𝑑 4  
However, 2002 ≡ 2 (𝑚𝑚𝑑 4). 
 
Thus there can be no integer solutions. 

? 



Putting everything together 
The following was a particularly badly answered BMO problem. But we can 
systematically reason through each step using the tips we’ve seen – no magic 
required! 

Question: Let 𝑛 be an integer. Show that, if 2 + 2 1 + 12𝑛2 is an integer, 
then it is a perfect square. 

First note that the question says IF [..] is an integer, THEN it is a 
square. We need to start with the assumption, and reason 
towards the conclusion – don’t be tempted to prove the opposite.  

1 

2 If 2 + 2 1 + 12𝑛2 is an integer, what can we assert about 1 + 12𝑛2? 
 

a) It is a perfect square, since the square root has to be an integer. 
b) It is odd. ? 

3 What equation could we therefore write that would model this? 
 

1 + 12𝑛2 = (2𝑘 + 1)2 ? 



To reason about factors, we know it’s generally a good idea to put an equation 
in the form where we have the product of expressions on each side. 
So rearrange 1 +  12𝑛2 =  (2𝑘 +  1)2 
 

𝟑𝒏𝟐 =  𝒌(𝒌 + 𝟏) 

4 

5 Use this to reason about the factors (Hint: We’ve seen this example before!) 
 
•  𝒌 and 𝒌 + 𝟏 are coprime. 
•  We earlier determined that one of 𝒌 and 𝒌 + 𝟏 is the square, and the 

other 3 times a square. 
•  We also earlier determined that if 𝒌 + 𝟏 was a multiple of 3, then by 

modular arithmetic, 𝒌 couldn’t be a square. Therefore 𝒌 + 𝟏 is a 
square, and 𝒌 is three times a square. 

? 

? 

Putting everything together 
The following was a particularly badly answered BMO problem. But we can 
systematically reason through each step using the tips we’ve seen – no magic 
required! 

Question: Let 𝑛 be an integer. Show that, if 2 + 2 1 + 12𝑛2 is an integer, 
then it is a perfect square. 



When we’ve used an expression to represent a restriction on a number, we 
ought to substitute it into the original expression. Use 3𝑛2 =  𝑘(𝑘 + 1) 
 

2 + 2 1 + 12𝑛2      = 2 + 2 1 + 4𝑘 𝑘 + 1  
                                      = 2 = 2 4𝑘2 + 4𝑘 + 1 
                                      = 2 + 2 2𝑘 + 1 2 
                                     = 4 𝑘 + 1  

6 

7 We earlier found that 𝑘 + 1 is a perfect square so what can we conclude? 
 
A square times a square is a square, since 𝒂𝟐𝒃𝟐 =  (𝒂𝒃)𝟐, so 𝟒(𝒌 + 𝟏) is a 
perfect square. 

? 

? 

Putting everything together 
The following was a particularly badly answered BMO problem. But we can 
systematically reason through each step using the tips we’ve seen – no magic 
required! 

Question: Let 𝑛 be an integer. Show that, if 2 + 2 1 + 12𝑛2 is an integer, 
then it is a perfect square. 



Fermat’s Little Theorem 
Not to be confused with Fermat’s Last Theorem! 

If 𝑝 is prime, and 𝑎 is any integer (such that 𝑎 is not a multiple of 𝑝), then: 

𝑎𝑝−1 ≡ 1 𝑚𝑚𝑑 𝑝  

310 ≡ 1 𝑚𝑚𝑑 11  
 

612 ≡ 1 𝑚𝑚𝑑 13  
 

846 ≡ 1 𝑚𝑚𝑑 47  

EXAMPLES: 

Fermat’s Little Theorem is a special case of Euler’s Theorem, which makes use of 
something called Euler’s Totient Function. It’s not difficult, and worth looking up. 



Fermat’s Little Theorem 

Show that 31 | 3150 − 1. 
We’re trying to show that: 

3150 − 1 ≡ 0 (𝑚𝑚𝑑 31) 
i.e. 

3150 ≡ 1 (𝑚𝑚𝑑 31) 
 
By Fermat’s Little Theorem: 

330 ≡ 1 (𝑚𝑚𝑑 31) 
So: 

3150 ≡ 330 5 ≡ 15 ≡ 1 (𝑚𝑚𝑑 31) 
 

? 



In many problems, it’s useful to consider the possible residues of 
square numbers and cube numbers, for example to contradict the 
other side of an equation. 

When working in modulo-k arithmetic, all integers that give the same 
remainder when divided by k are equivalent/‘congruent’.  1 

2 

If x divided by y gives a remainder of z, then x – z is divisible by y. 
Use this in problems which specify the remainders for certain divisions.  3 

Experimenting with different modulo can reveal information about 
your variables, particular for problems involving squared/cubed 
numbers. 

4 

If working in modulo-p arithmetic where p is prime, then we see all the 
possible residues for each p numbers in an arithmetic sequence, unless 
the common difference is a multiple of p. 

5 

Modular Arithmetic Summary 



 Part 5: Digit Problems 

 Topic 2 – Number Theory 



When we want to find the last digit of some expression, we 
can do our arithmetic modulo: 

10 ? 

Reasoning about last digits 



Using Laws of Modular Arithmetic 

Prove that the last digit of a square number can never be 2. 

If a square number DID end with a 2, then expressing this in 
modular arithmetic: 
 

𝑛2 ≡ 2 𝑚𝑚𝑑 10  
 
Since 𝑛 ≡ 0,1,2,3,4,5,6,7,8,9 𝑚𝑚𝑑 10 , then 
𝑛2 ≡ 0, 1, 4, 9, 6, 5, 6, 9, 4, 1 𝑚𝑚𝑑 10 . 
So square numbers cannot end in 2 or 3 or 7 or 8. 

? 



31000 

3 
31 32 

9 7 
33 

1 
34 

1 
31000 

(mod 10) 

27 ≡ 7 (mod 10), i.e. we 
only ever need to keep 
the last digit when we’re 
working modulo-10 
arithmetic. 

This is a very useful trick! 
If a ≡ 1 (mod n), then ak ≡ 1k ≡ 1 (mod n) 
So if 34 ≡ 1 (mod 10), then (34)250 ≡ 31000 ≡ 1 (mod 10). 
A strategy to find the last digit in general of ab 
therefore is to try and get to 1 by incrementally raising 
the power, at which point we can multiply the power 
by anything we like! 

Reasoning about last digits 



 

  

[SMC]: The value of 12004 + 32004 + 52004 + 72004 + 92004 is calculated using 
a powerful computer. 
What is the units digit of the correct answer? 

A: 9     

  

  B: 7   C: 5 

D: 3   E: 1 

The last digit of 34 is 1, as is the last digit of 74 and the last 
digit of 92. So the last digit of (34)501, that is of 32004, is 1. 
Similarly, the last digit of (74)501, that is of 72004, is 1 and the 
last digit of (92)1002, that is of 92004, is 1. Furthermore, 12004 = 
1 and the last digit of 52004 is 5. So the units digit of the 
expression is 1 + 1 + 5 + 1 + 1, that is 9. 

Reasoning about last digits 



Question: Find the last non-zero digit of 50! Source: Team SMC 

We could use find the complete prime factorisation of 50!. 
50!  = 247 x 322 x 512 x 78 x 114 x 133 x 172 x 192 x 232 x 29 x 31 x 37 x 41 x 43 x 47. 
To find the number of twos for example, we look for multiples of 2 up to 50 
(there’s 25), then get bonus 2s from multiples of 4 (there’s 12), then bonus 2s 
from multiples of 8 (6) then 16 (3) and the extra 2 from the 32, giving 47 in 
total. 
We eliminate the 5s to get rid of the zeros on the end of 50!, and thus must get 
rid of 12 twos as well, leaving 35 twos. 
At this point, we can use modulo-10 arithmetic to find the last digit quickly, 
which we can do without a calculator because at any point we only ever need 
to keep the last digit: 
235 x 322 x 78 x 114 x 133 x 172 x 192 x 232 x 29 x 31 x 37 x 41 x 43 x 47  
        ≡ 8 x 9 x 1 x 1 x 7 x 9 x 1 x 9 x 9 x 1 x 7 x 1 x 3 x 7 ≡ 2 (mod 10) 

? 

Reasoning about last digits 



Suppose we have a 2-digit number “𝑎𝑏”. 

Q1: What range of values can each variable have? 

𝑎: 1 to 9   𝑏: 0 to 9   
It couldn’t be 0 otherwise we’d have 
a 1-digit number. 

? ? 

Q2: How could we represent the value (𝑛) of the digit using 𝑎 and 𝑏? 

𝑛 = 10𝑎 + 𝑏 

e.g. If 𝑎 = 7 and 𝑏 = 2, we want 𝑛 = 72 

? 
Similarly, a 3-digit number “𝑎𝑏𝑐” could be 
represented as 100𝑎 + 10𝑏 + 𝑐 

Representing digit problems algebraically 



[Hamilton 2005 Q4] An ‘unfortunate’ number is a positive 
integer which is equal to 13 times the sum of its digits. 
Find all ‘unfortunate’ numbers. 

Use what you know! 

I can represent the 
digits algebraically 
and form an 
equation. 

 

Answer: 117, 156, 195  ? 
Let’s try 2-digit numbers first. Algebraically: 
10a + b = 13(a + b) 
So 3a + 12b = 0. But this gives us no solutions because one of a or b 
would have to be negative. 
 
Now try 3-digit numbers: 
100a + 10b + c = 13(a + b + c) 
This simplifies to 29a = b + 4c 
Suppose a = 1. Then if b=1, c=7, giving 117 as a solution. 
We also get a=1, b=5, c=6 and a=1, b=9, c=5. 
If a=2 or greater, then the LHS is at least 58. But b + 4c can never be big 
enough, because at most b=c=9, so b+4c = 45. 
 
Now try 4-digit numbers: 
We get 329a + 29b = c + 4d after simplification. But when a is at its 
lowest, i.e. a=1, and b=0, the c+4d can clearly never be big enough. 

I know each of my 
digits can be 
between 1 and 9 
(and 0 if not the first 
digit) 

 

Representing digit problems algebraically 



 Part 6: Rationality and Miscellaneous 

 Topic 5 – Number Theory 



You may well have seen a proof before for the irrationality of 2. Recall that a rational 
number is one that can be expressed as a fraction. 

   Aristotle’s Proof 

Use a proof by contradiction: 
Assume that √2 is rational. Then it can be 
expressed as a fraction in its simplest form 𝑎/𝑏, 
where 𝑎 and 𝑏 are coprime (if they weren’t 
coprime, we’d be able to simplify the fraction. 
 
Then squaring both sides: 

𝑎2 =  2𝑏2 

Then 𝑎2 is even, and so 𝑎 is even. 
Therefore let 𝑎 =  2𝑘. 
 

2𝑘 2  =  2𝑏2 
4𝑘2 =  2𝑏2    so 2𝑘2 =  𝑏2 
Therefore 𝑏 is also even. Then 𝑎 and 𝑏 share a 
common factor of 2, contradicting that 𝑎/𝑏 is 
in its simplest form. 
 
 

Something I just thought of... 

Let’s reason about the factors on each 
side of the equation 𝒂𝟐 = 𝟐𝒃𝟐. 
We know that the powers in the prime 
factorisation of a square number need to 
be even. So for each of 𝑎 and 𝑏, it can 
either not contain a 2, or its 2s come in 
pairs.  
Either way, we have an even number of 
2s on the LHS of the equation, and an 
odd number on the RHS due to the extra 
2. 
Thus the equation has no integer 
solutions, i.e. a square number cannot 
be twice another square number. 

Irrationality of 2 



Question: Let 𝑆 be a set of rational numbers with the following properties: 
1) 1/2 is an element of 𝑆 
2) If 𝑥 is an element of 𝑆, then both 1/(𝑥 + 1) is an element of 𝑆 and 𝑥/(𝑥 + 1) is 
an element of 𝑆 
Prove that 𝑆 contains all rational numbers in the interval 0 < 𝑥 < 1. 

What would the structure of our proof look like?: 

1. Start with some rational number 𝑎/𝑏 in the interval 0 < 𝑥 < 1. 
2. Show somehow that we can use either of the statements in (2) until we eventually get to 
a half (satisfying (1)), and thus we can always find some chain starting from 1/2 to get to 
any rational number in the interval. 

? 

Solution: 
We could show that if x is some rational number 𝑝

𝑞
 (for some coprime 𝑝 and 𝑞, as with the 

irrationality of √2 proof), then 1
𝑥+1

= 𝑞
𝑝+1

 and 𝑥
𝑥+1

 is 1 − 𝑞
𝑝+1

 

But we get nicer expressions if we do it backwards: if 1
𝑥+1

 = 𝑝
𝑞

, then 𝑥 = 𝑝−𝑞
𝑞

. Similarly, if 
𝑥

𝑥+1
 = 𝑝

𝑞
, then 𝑥 = 𝑝

𝑞−𝑝
 

This means we can subtract the numerator from the denominator, and reciprocate the 
fraction if it’s above 1, and still have a value in the set 𝑆. 
e.g. 5/7  5/2 2/5  2/3  2/1  1/2     (Continued on next slide) 
 

A rationality BMO problem 

? 



Round 2 

Round 1 

BMO 

 
e.g. 5/7  5/2 2/5  2/3  2/1  1/2 
All that remains therefore is to prove that we can make sure a chain from any 𝑝

𝑞
 to 

eventually get to 1
2
. 

 
Informally, we could argue that as the numerator or denominator can always 
decrease in each step, then one of them will reach 1. If the denominator reaches 1 
first and we have 𝑘

1
, we know 1

𝑘+1
 is in the set. If we have 1

𝑘
, then we can always use 

our 𝑝
𝑞
→ 𝑝

𝑞−𝑝
 rule to reduce 𝑘 by 1 each time until we reach 1

2
. 

 
A more formal proof could use a proof by contradiction, found here: 
http://www.theproblemsite.com/problems/mathhs/2008/Jun_1_solution.asp 

A rationality BMO problem 
[BMO 2004/05 Q5] Let 𝑆 be a set of rational numbers with the following properties: 
1) 1/2 is an element of 𝑆 
2) If 𝑥 is an element of 𝑆, then both 1/(𝑥 + 1) is an element of 𝑆 and 𝑥/(𝑥 + 1) is 
an element of 𝑆 
Prove that 𝑆 contains all rational numbers in the interval 0 < 𝑥 < 1. 

http://www.theproblemsite.com/problems/mathhs/2008/Jun_1_solution.asp


 Part 7: ‘Epilogue’ 

 Topic 2 – Number Theory 

The rest of these slides don’t explore any theory that is likely to be use in 
any Maths Challenges/Olympiads or university interviews, but explore an 
interesting area of Number Theory... 



Let’s finish with something light... 
Analytic Number Theory! 

= ‘Mathematical analysis’ + Number Theory  
Using differentiation, integration, 
limits, and usually considering real 
and complex numbers. 

Properties of integers. 

That’s interesting: we’re using analysis, which concerns real and complex numbers, 
to reason about the integers. 



Let’s finish with something light... 
Analytic Number Theory! 

×  Those involving multiplication 

...which includes reasoning about factors. 
Usually concerns properties of prime 
numbers. 

+  Those involving addition 

e.g. The yet unproven Goldbach 
Conjecture: “every even integer is the 
sum of two primes”. 

There’s broadly two types of problem studied in this field: 

Let’s have a tiny bit of a look at prime numbers... 



The probability that a randomly chosen large number 𝑵 is prime is 
approximately 1 in 𝒍𝒏 𝑵  

Since the graph of ln(N) always increases but gradually slows down, this suggests 
(as we might expect) that primes gradually become more spread out for larger 
numbers, but that the gap between prime numbers gradually levels off. 

Prime Number Theorem: 

P(10,000 is prime) = 1
ln 10000

= 0.11 
     So around this number we’d ‘expect’ roughly 1 in 10 numbers to be prime.  

P(1 billion is prime) = 1
ln 1 000 000 000

= 0.048 
     So around this number we’d ‘expect’ roughly 1 in 20 numbers to be prime.  

Distribution of primes 



The ‘prime-counting function’, i.e. the number of primes up to 
and including x. 

So 𝜋 10 = 4, because there are 4 prime numbers (2, 3, 5, 7) up to 10. 
(Note that the 𝜋 symbol is being used a function here, not as the constant you know and love!) 

𝜋 𝑥  

Could we use the Prime Number Theorem to come up with an estimate for 𝒑(𝒙)? 
 
Consider 100  people who have been asked to come to your party. If each person has 
a 0.3 chance of coming to your party, you’d expect 100 × 0.3 = 30 people to come. 
But more generally, if each person had different probabilities of coming to your 
birthday, you could add the probabilities to get an estimate for the total coming. 
 
Similarly, if we added up the probability of each number of prime up to 𝑥, we’d get 
an estimate of the number of primes up to 𝑥. So: 

Counting primes 



But since ln(x) is a continuous function, we may as well use integration instead, 
finding the area under the graph: 

The function on the RHS is known as the “logarithmic integral”, written 𝑳𝑳(𝒙) 
 
But if we consider the graph of ln(x), and note that as x becomes large, the gradient 
of ln(x) becomes 0, and thus we could come up with a looser but easier to calculate 
approximation that assumes we use the same probability ln(x) for all numbers up to 
x (rather than calculate ln(k) for each k up to x as before). 
Then, given the probability is constant, then going back to our party analogy, we can 
just multiply this constant probability by the number of people to get the estimate 
attendance, i.e. Multiply 1/ln(x) by x to get an estimate number of primes: 
 

Counting primes 



The graph indicates how accurate these two estimates area compared to the 
true number of primes 𝜋 𝑥 . 

1.1 means we’ve 
overestimated 
by 10% 

We can see that this estimate is 99% 
accurate once we consider the number 
of primes up to about 100,000 

Counting primes 



There’s currently no formula to generate the 𝒙th prime. 
But we can use the approximation 𝜋 𝑥 = 𝑥

ln 𝑥
 seen earlier. 

 
If there are 𝑥

ln 𝑥
 prime numbers up to 𝑥, this suggests that the ( 𝑥

ln 𝑥
)th prime 

number is roughly 𝑥. 
That means that the 𝒙th prime number will be roughly 𝒙 𝒍𝒏 𝒙   

Example: 
The actual 100,000th prime number is just under 1.3 million 
And 100000 × ln 100000 = 1.15 million. 
 
This percentage error is reduced as the number becomes larger. 

The 𝑥th prime? 



To solve this problem, let’s first consider the Riemann Zeta Function 
(which these resources are named after!) 

So for example: 

Which curiously comes to 𝜋
2

6
 (and yes, 𝜋 here means 3.14…)  

Euler proved that such as sum is related to a product involving primes: 

For example: 

The probability two numbers are coprime? 



1
𝑝2

 

How then is this related to the probability of two numbers being 
coprime? 

What’s the probability an integer is divisible by 4? 1
4

 

To consider whether two numbers are coprime, we need to test whether each possible prime 
𝒑 is a factor of both.  
We need not test whether they’re both divisible by non-primes, because if for example both 
numbers are divisible by 8, we would have already earlier found that they are divisible by 2. It 
also ensures we have independence: the probability of a number being divisible by 2 is not 
affected by the probability of being divisible by 3, but if a number is divisible by 2 say, then this 
increases the chance it’s divisible by 4 (from 0.25 to 0.5). 

? 

What’s the probability that two numbers are 
divisible by some number p? 

What’s the probability that neither of two 
numbers is divisible by a number p? 1 −

1
𝑝2

 

? 

? 

The probability two numbers are coprime? 



Then by considering all possible primes p, the probability is: 

The RHS looks familiar! We saw that the product of such expressions 
involving primes was the same as the Riemann Zeta Function. 
 
So the probability is ζ(2)-1, which is (π2/6)-1  
 
  

I find this remarkable, that 𝜋, usually associated with circles, would 
arise in a probability involving coprimality! 

=
6
𝜋2

 

The probability two numbers are coprime? 
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