THE MOLE

When chemists manufacture a substance they need to be able to calculate the amounts of reactants and products involved.

When we refer to <u>amount</u> we mean **the number of particles in a substance** (particles could be atoms, molecules, ions or electrons).

The amount of substance is measured in **MOLES**.

The mole can be thought of as a counting unit used by chemists. You will have come across some other counting units such as:

Pair = 2 things/entities
Dozen = things/ entities
Score = things/ entities
Gross = things/ entities
Mole = things/ entities

Definition:

1 mole is the amount of substance which contains as many particles as there are atoms in exactly 12g of carbon-12.

1 mole of any substance contains 6.022 x 10²³ particles.

This number is called the **Avogadro Number** or **Avogadro Constant**. It has the symbol **L**, and units, **mol**⁻¹.

Even though a mole of any substance has the **same number of particles** as a mole of another substance, since atoms have different masses a mole of any one substance has a **different mass** to a mole of another substance.

Weighing out the A_Γ of an element in grams gives 1 mole of atoms. Similarly, the M_Γ of a compound in grams gives 1 mole of entities.

So, 12g of C contains 6.022x10²³ atoms of C (1 mol) 63.5g of Cu contains 6.022x10²³ atoms of Cu (1 mol) 14g of N contains 6.022x10²³ atoms of N (1 mol) 28g of N₂ contains 6.022x10²³ molecules of N₂ (1 mol)

Exercise

Give the mass of:

- (i) 1 mol S atoms
- (ii) 1 mol Cl₂ molecules
- (iii) 1 mol Fe atoms

Molar Mass

This is the mass of 1 mole of a substance. It has the symbol M, units g mol-1.

It is used with elements, molecules and ionic compounds.

It is equal to the relative mass (A, or M_I) expressed in grams.

So, the molar mass of water, H_2O is 2 x 1 + 16 = 18 g mol^{-1} . This means 1 mole of water has a mass of 18 grams.

Chemists use moles to measure out reactants, or calculate the mass of product of a reaction.

The number of moles of a substance in a given mass of substance can be calculated if the chemical formula is known.

For **pure solid and liquid** elements and compounds the formula below is used:

Worked Examples

1. How many moles of Ca are there in 120g of Ca?

 A_r Ca = 40, therefore M Ca = 40gmol⁻¹

number of moles =
$$\frac{120g}{40g\text{mol}^{-1}} = 3.0 \text{ mol}$$

2. What mass of NaCl contains 10 moles of NaCl?

To calculate a mass we need to rearrange the formula above.

mass = number of moles x molar mass

 M_r NaCl = 23 + 35.5 = 58.5, therefore M NaCl = 58.5 gmol⁻¹

mass = $10 \text{ mol x } 58.5 \text{ gmol}^{-1} = 585 \text{ g}$

Questions

- 1. How many moles of each substance are contained in the following?
 - (i) 69g Pb
 - (ii) 70g Fe
 - (iii) 5.30g Na₂CO₃
- 2. Calculate the mass of:
 - (i) 0.013 mol Cl
 - (ii) 3.00 mol Mg
 - (iii) 2.00 mol SO₃

Exercise Complete the following table

Compound	Formula	molar mass /g mol ^{□1}	Number of moles	Mass of compound /g
Water	H ₂ O	18	1	18 g
Ammonia	NH ₃		1	
Carbon dioxide			0.5	
Methane	CH ₄			64 g
Methanol	CH ₃ OH			16g
Hydrogen bromide	HBr			161.8g
Ethanol	C ₂ H ₅ OH		1.5	